agreed valuation - определение. Что такое agreed valuation
Diclib.com
Словарь ChatGPT
Введите слово или словосочетание на любом языке 👆
Язык:

Перевод и анализ слов искусственным интеллектом ChatGPT

На этой странице Вы можете получить подробный анализ слова или словосочетания, произведенный с помощью лучшей на сегодняшний день технологии искусственного интеллекта:

  • как употребляется слово
  • частота употребления
  • используется оно чаще в устной или письменной речи
  • варианты перевода слова
  • примеры употребления (несколько фраз с переводом)
  • этимология

Что (кто) такое agreed valuation - определение

Valuation domain; Center (valuation ring)

Business valuation         
PROCESS OF DETERMINING ECONOMIC VALUE OF AN OWNER'S INTEREST
Corporate valuation; Enterprise valuation; Marketability; Discount for lack of marketability; Total Beta
Business valuation is a process and a set of procedures used to estimate the economic value of an owner's interest in a business. Here various valuation techniques are used by financial market participants to determine the price they are willing to pay or receive to effect a sale of the business.
valuation         
WIKIMEDIA DISAMBIGUATION PAGE
Valuation (mathematics); Valuation (disambiguation); Valuations
n.
1.
Appraisement, estimation.
2.
Value, worth.
valuation         
WIKIMEDIA DISAMBIGUATION PAGE
Valuation (mathematics); Valuation (disambiguation); Valuations
(valuations)
A valuation is a judgment that someone makes about how much money something is worth.
...an independent valuation of the company...
Valuation lies at the heart of all takeovers.
N-VAR

Википедия

Valuation ring

In abstract algebra, a valuation ring is an integral domain D such that for every element x of its field of fractions F, at least one of x or x−1 belongs to D.

Given a field F, if D is a subring of F such that either x or x−1 belongs to D for every nonzero x in F, then D is said to be a valuation ring for the field F or a place of F. Since F in this case is indeed the field of fractions of D, a valuation ring for a field is a valuation ring. Another way to characterize the valuation rings of a field F is that valuation rings D of F have F as their field of fractions, and their ideals are totally ordered by inclusion; or equivalently their principal ideals are totally ordered by inclusion. In particular, every valuation ring is a local ring.

The valuation rings of a field are the maximal elements of the set of the local subrings in the field partially ordered by dominance or refinement, where

( A , m A ) {\displaystyle (A,{\mathfrak {m}}_{A})} dominates ( B , m B ) {\displaystyle (B,{\mathfrak {m}}_{B})} if A B {\displaystyle A\supseteq B} and m A B = m B {\displaystyle {\mathfrak {m}}_{A}\cap B={\mathfrak {m}}_{B}} .

Every local ring in a field K is dominated by some valuation ring of K.

An integral domain whose localization at any prime ideal is a valuation ring is called a Prüfer domain.